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Abstract. We present a technique for the automatic reduction of chemical re-
action networks (CRNs). We study exact fluid lumpability, a partition of species
satisfying the dynamical property that species in the same block have the same
output at all times if initialized equally. Inspired by analogous approaches in tradi-
tional models of computation such as labelled transition systems, we characterize
this property as a behavioral equivalence over species which can be checked only
using CRN structural information. We give an algorithm to construct a quotient
CRN induced by exact fluid lumpability. Further, we provide an algorithm that
computes the coarsest partition in polynomial time. As an application, we find
significant, lossless reductions in a number of models of biological processes
available in the literature. In two cases we allow the analysis of benchmark mod-
els which would be otherwise intractable due to their memory requirements.

1 Introduction

Chemical reaction networks (CRNs) are a popular mathematical model of systems in
a number of disciplines including organic and inorganic chemistry, biochemistry, and
systems biology. Indeed, they represent the kernel language for higher-level graph-
rewriting approaches such as BioNetGen [1] and the κ-calculus [11], for modeling
biochemical reaction networks, and the Systems Biology Markup Language, http:
//sbml.org/, the reference format for models of biological processes.

The dynamics of a CRN is typically expressed in terms of a system of ordinary dif-
ferential equations (ODEs) or as a Markov process giving the trajectory of the species’
concentrations or molecular counts, respectively, as a function of time. In either case,
since no closed-form solutions are available in general, CRNs are typically analyzed
using numerical solvers. Thus, finding model reductions that preserve the dynamics at
a cheaper computational cost is imperative, especially for CRNs of complex biological
mechanisms consisting of a large number of species and reactions [8, 7, 15, 13, 10].

In this paper we introduce a technique for the automatic reduction of CRNs accord-
ing to the notion of exact fluid lumpability (EFL). It identifies a partition of the species
of a CRN where species within the same partition block have undistinguishable ODE
solutions whenever they start with equal initial conditions. Building on a species-as-
process analogy, we characterize EFL in terms of behavioral relations between species.



The main consequence is that EFL can be checked structurally, i.e., statically by an-
alyzing the reactions in the model, instead of considering the underlying differential
system. Furthermore, we develop an efficient partition refinement algorithm [19] which
computes the coarsest EFL refinement of an input partition of species in polynomial
time. Since equivalent species have the same ODE trajectories, EFL will induce an ag-
gregated ODE system yielding one equation for each partition block which incurs no
loss of information with respect to the original model. We lift this aggregation to the
CRN level by defining, for any given EFL partition, a quotient CRN in a canonical form
characterized by the fewest number of reactions to describe the aggregated ODEs.

We studied the effectiveness of EFL in reducing realistic models of biological in-
terest. Despite the arguable strictness imposed by EFL — the ODE trajectories must
coincide at all time points — we did find significant reductions in a number of mod-
els of biological processes available in the literature, leading to speed-ups in the ODE
solution runtimes of up to four orders of magnitude. In two cases, EFL automatically
enabled a very rapid analysis of benchmark models presented in [21] which were in-
tractable in our experimental set-up due to the excessive memory requirements.

EFL can be used in a black-box manner as an automated tool for CRN reduction.
However, in our case studies it afforded an interpretation also of biological relevance.
For instance, we found EFL beneficial in biochemical models involving complexes
(e.g., proteins) having multiple sites that can be modelled as being independent and
with equivalent capability, intended as their ability to change state (e.g., phosphorylate
or methylate) or to bind other molecules with equal rates. The original CRN associates
a distinct species to each possible configuration of the complex, to track which site is
in which state, leading to an exponential blow-up. Instead, the EFL reduction main-
tains only canonical representatives that do not track the specific site but how many
independent sites are in a particular configuration of local states.

Further related work. Behavioral equivalences have been recently proposed in [20]
for comparing CRNs; however, the analysis is carried out at the qualitative level, i.e.,
ignoring rates and dynamical evolution. The study of EFL for Markovian process alge-
bra in [24] is different for two reasons. First, checking a candidate partition is difficult
due to universal quantifiers over the ODE variables present in the conditions. Second,
no algorithm for computing the coarsest partition was developed.

There are complementary techniques in related approaches. The notion of fragmen-
tation for the κ language presented in [10] identifies a transformation of the state space
yielding a sub-space with a closed dynamics, i.e., whose ODEs depend only on the
variables of that subspace. This transformation is intended in the sense of the theory
ODE lumpability [23, 18], whereby in the aggregated ODE system each variable has a
solution equal to a linear combination of the solutions of the original variables. This
causes loss of information in general since the concentration of individual species can-
not be recovered, similarly to related (but non-algorithmic) earlier approaches to model
reductions in biochemical networks [2, 8, 7]. In EFL, instead, the canonical representa-
tive gives the exact trajectory of each species within the equivalence class — i.e., the
reduction is lossless. In addition, it is also possible to identify the following differences.

First, fragmentation works at a higher modeling level, as it is based on a structural
analysis of the rewrite rules instead of the lower-level CRN. Second, it is concerned



mi1 : Y0 + Z0 →α1 Z0 + Y1

mi2 : Y1 + Z0 →α2 Z0 + Y2

mi3 : Y2 + Y0 →α3 Y0 + Y1

mi4 : Y1 + Y0 →α4 Y0 + Y0

mi5 : Z2 + Z0 →α1 Z0 + Z1

mi6 : Z1 + Z0 →α2 Z0 + Z0

mi7 : Z0 + Y0 →α3 Y0 + Z1

mi8 : Z1 + Y0 →α4 Y0 + Z2

(a) CRN for MI

am1 : X0 +X2 →α1 X2 +X1

am2 : X1 +X2 →α2 X2 +X2

am3 : X2 +X0 →α3 X0 +X1

am4 : X1 +X0 →α4 X0 +X0

(b) CRN for AM
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(c) ODE solutions

Fig. 1: Running example. Emulation between a mutual inhibition (MI) network and a
CRN for approximate majority (AM).

with static information, i.e., it does not involve information about the kinetic rates of
the reactions. As a result, it will yield sufficient conditions for aggregation. Instead,
EFL is fully characterized, that is, two species are in the same block if and only if their
ODE solutions are equal at all time points. On the other hand, [10] can be checked
on the set of rewrite rules, which is typically much smaller than the CRN size. Third,
the symmetries detected at the underlying ODE level are in general not comparable;
that is, it is not difficult to find ODE models which can be aggregated by EFL and
not by ODE lumpability (e.g., our running example, presented next), and vice versa.
Fourth, fragmentation may introduce an additional loss of information since there may
be species that cannot be observed in any fragment.

The work in [3] proposes a fragmentation approach to capture symmetric sites in
κ, i.e., sites with equivalent capabilities in the same sense as in the aforementioned in-
terpretation of EFL, but through ODE lumpability. It was not possible to empirically
compare EFL with [3] since an implementation is currently not available. However we
remark that, unlike [2, 8, 7, 10, 3], EFL is not domain-specific: we present next a case
study where EFL can be used to relate the dynamics of models of biological mecha-
nisms [4] which do not involve post-translational modifications and complex formation.

2 Running Example

In [4], Cardelli presents the notion of emulation between two CRNs. Essentially, it
states that a mapping of species and reactions from one source CRN to a target CRN
is such that related species have the same ODE trajectories whenever they start from
identical initial conditions. This dynamical property makes [4] the closest approach to
ours, hence we consider a case study to clarify the relationship with [4], and to introduce
a running example for this paper.

Figure 1a shows the CRN for a mechanism of mutual inhibition (MI) [14], using
standard notation that will be defined precisely later. There are two molecules, Y and



Z, which can evolve through molecular states 0, 1, and 2 (denoted by CRN species Y0,
Y1, and Y2). States 0 and 2, model the activated and inhibited state, respectively; state 1
is an intermediate condition that is reached at every transition between activation and
inhibition. Species can influence each other. For instance, reactionsmi1 andmi2 model
that the activated state of Z inhibits Y , since they implement a two-step modification
that turns Y0 into Y2. Dually, reactions mi7 and mi8 model that an active Y inhibits Z.

Figure 1b represents a network that computes the well-known approximate major-
ity (AM) population protocol [5]. It is capable of turning all elements of either species 0
or 2 into the other (passing through the intermediate, undecided, state 1), depending on
which of the two species had the highest initial concentration. For instance, reaction
am1 says that an encounter between X0 and X2 will cause X0 going into the unde-
cided state X1. Instead, reactions am2 and am4 say that undecided elements take the
state of the partner species with which they interact.

In this example, it can be shown that there is an emulation between the two CRNs
via a mapping of the species and reactions given by

Y0 7→ X0, Y1 7→ X1, Y2 7→ X2, Z0 7→ X2, Z1 7→ X1, Z2 7→ X0 (1)
mi1 7→ am1,mi2 7→ am2,mi3 7→ am3,mi4 7→ am4,

mi5 7→ am1,mi6 7→ am2,mi7 7→ am3,mi8 7→ am1 (2)

respectively. The top plot in Figure 1c shows the ODE solution of MI when species that
are mapped onto the same species in AM are initialized equally, showing trajectories
overlapping in pairs. The bottom plot shows that the trajectories correspond to those
of AM under analogous initial conditions. (It also illustrates the intent of AM — the
concentration of X0 vanishes as time goes by because it was lower than X2 initially.)

Emulations can be studied when both the source and the target CRNs are available
— the modeller is intended to have the suspicion that, for some given CRN, another
CRN might be related to it. But emulation cannot be used when one wants to discover
symmetries among species within the same given CRN — e.g., to detect in MI alone that
the trajectories of Y2 and Z0 are equal. Thus emulation is not useful for model reduction
because a-priori information about the structure of a quotient CRN is not available.

Yet, we will use and reconcile with the theory of emulation in two ways: (i) to
explain a structural relationship between a given CRN and the quotient CRN induced by
an EFL partition; and (ii) to show that emulation can be interpreted as an EFL partition
on the union CRN with species and reactions from both the source and the target CRNs.

3 Overview of Results

Using our running example, in this section we summarize the main contributions of this
paper and anticipate the results of the application of EFL to the case studies. Instead, a
formal development of the theory will be provided in later sections.

Behavioral characterization of EFL (Section 4.2). We understand EFL in terms of a
behavioral relation between species. To do so, we introduce the notion of fluxes. They
summarize the contribution of each species by each reaction. A flux is a triple recording



(i) the species’ net stoichiometry in the reaction (if different than 0), (ii) the rate param-
eter of the reaction, and (iii) the reactants involved. For instance, the flux due to reaction
mi6 in Z0 is (1, α2, Z0 + Z1). Thus the overall behavior of a species A is the multi-set
(to account for reactions with same reactants, rates, and stoichiometries) of fluxes for
all reactions, T (A). For instance, in MI we will have that T (Z0) =

{∣∣(1, α2, Z0 +

Z1), (−1, α3, Y0 + Z0)
∣∣} and T (Y2) =

{∣∣(1, α2, Y1 + Z0), (−1, α3, Y0 + Y2)
∣∣}.

Our first contribution is to characterize EFL as a partition where species within the
same block have indistinguishable fluxes whenever the species in the fluxes are renamed
with canonical representatives induced by the partition. For instance, T (Z0) and T (Y2)
become equal to

{∣∣(1, α2, Z0+Z1), (−1, α3, Y0+Z0)
∣∣} once the reactants are replaced

by canonical representatives of the EFL partition H̃ := {{Y0, Z2}, {Y1, Z1}, {Y2, Z0}}.

A partition-refinement algorithm (Section 4.3). The behavioral characterization al-
lows for checking EFL structurally on the reactions in the model. Using this, we develop
a polynomial-time algorithm (cf. Algorithm 1) to compute the coarsest EFL refinement
(cf. [19]) of a partition of species given as an input. The input partition can be chosen
arbitrarily, for instance to tell apart species that cannot be EFL equivalent because al-
ready their initial conditions are known to be different. In particular, in the case studies
we will use initial partitions that are consistent with the initial conditions specified in
the original published model: two species are in the same block if and only if their ini-
tial conditions are equal. This clearly ensures that the algorithm’s output is a partition
where two species in the same block have the same initial conditions in the original
CRN model (because the output is a refinement of the initial partition).

An algorithm to compute the quotient CRN from an EFL partition (Section 4.4).
EFL will induce an aggregated ODE system yielding one equation for each equivalence
class. We lift this aggregation to the CRN language level by defining, for any given
EFL partition, a quotient CRN in a canonical form characterized by the fewest number
of reactions to describe the aggregated ODE. If the EFL partition is consistent with
the initial conditions then the aggregated ODE system will carry the same solution, in
lossless way, as the original ODE system.

Case studies. We tested EFL on biological models publicly available as BioNetGen
files, comparing the runtime of the ODE solution of the original model against the run-
time of the EFL-reduced model. The experiments are replicable using a Java-based pro-
totype available at http://users.ecs.soton.ac.uk/mt2y12/EFL.zip.

Table 1 summarizes the results. For each model, the name corresponds to the file-
name available in our repository; e2–e9 are synthetic benchmarks proposed in [21] to
study the scalability of the CRN solution with respect to the presence of multiple inde-
pendent sites in complexes; m1 is a model of pheromone signaling in yeast [22], m2
models a signaling pathway through the Fcε receptor complex [21, 12]; m3 is a model of
EGF and insulin signaling [7, 17]; m4 is a model of tyrosine phosphorylation and adap-
tor protein binding [6]; and m5 is a MAPK pathway model [16]. Column Int. shows the
final time point for the ODE numerical solution, taken from the referenced papers when
available; in the models e2–e9 this information was not provided, hence we solved the
ODEs until they approached steady state (estimated at ca 50 time units). Labels |S| and



Original Model EFL Reduction

Id Int. |S| |R| ODE |S| |R| ODE Alg. 1 Alg. 2 Speed-up

e9 50 262146 3538944 — 220 540 9.20E-1 1.11E+4 1.25E+1 —
e8 50 65538 786432 — 167 396 1.20E-1 6.47E+2 1.22E+0 —
e7 50 16386 172032 6.64E+3 122 280 9.70E-2 3.33E+1 3.18E-1 6.84E+4 (1.97E+2)
e6 50 4098 36864 1.77E+2 86 189 2.30E-2 2.99E+0 1.50E-1 7.69E+3 (5.59E+1)
e5 50 1026 7680 7.85E+0 58 120 2.21E-2 7.83E-1 4.10E-2 3.55E+2 (9.28E+0)
e4 50 258 1536 4.64E-1 37 70 1.60E-2 1.30E-1 3.80E-2 2.90E+1 (2.52E+0)
e3 50 66 288 7.25E-2 22 36 1.51E-2 4.80E-2 1.70E-2 4.80E+0 (9.05E-1)
e2 50 18 48 5.05E-2 12 15 1.68E-2 2.70E-2 5.00E-3 3.01E+0 (1.03E+0)

m1 3600 14531 194054 3.72E+3 6634 29481 3.17E+2 9.29E+1 8.24E-1 1.17E+1 (9.06E+0)
m2 3840 10734 187468 6.36E+2 5574 28016 7.35E+1 5.80E+1 8.57E-1 8.65E+0 (4.80E+0)
m3 120 2768 38320 4.96E+1 2719 15624 7.74E+0 6.82E+0 3.19E-1 6.41E+0 (3.33E+0)
m4 1000 730 5832 2.78E+0 217 405 4.61E-2 8.64E-1 3.70E-2 6.02E+1 (2.93E+0)
m5 600 85 487 6.47E-2 56 129 2.05E-2 6.00E-2 1.30E-2 3.16E+0 (6.92E-1)

Table 1: EFL reduction for BioNetGen CRN models.

|R| indicate the number of species and reactions, respectively, in the original and in
the EFL reduced models. Labels ODE indicate the runtime of the ODE solution from 0
until the final time point, averaged over three independent executions. The ODEs were
solved using Matlab’s ode15s function for stiff ODE systems, as available in the release
R2014b. Columns Alg. 1 and Alg. 2 show the runtimes of our implementations of the
partition-refinement and the CRN-mimimization algorithms, respectively. All runtimes
are rounded to two significant digits, from measurements taken on an ordinary laptop
machine equipped with a 1.7 GHz Intel Core i7 processor and 8 GB RAM. Finally, col-
umn Speed-up shows the ratio between the measured runtimes of the original model and
the reduced model. Between parentheses is the speed-up when the EFL reduction time
is also accounted for. This represents a worst-case scenario when the reduced model is
used only once, but we note that the same minimization can be re-used with any other
choice of initial conditions that leads to the same initial partition for Algorithm 1.

It can be observed that EFL is convenient for large-scale CRNs, with speed-ups up
to four orders of magnitude. For e8 and e9 with EFL it was possible to analyze models
whose original CRNs could not open in our experimental set-up due to out-of-memory
errors (consistently with [21], where a similar problem is reported for e9 ).

Biological interpretation of EFL. Let us consider model e2 to show how EFL can
exploit the aforementioned symmetries between multiple independent sites. Table 2
shows the output of the partition-refinement algorithm. According to the BioNetGen
syntax, a molecule S (singleton block 5) has two binding sites, labelled p1 and p2,
which can be either phosphorylated (state P ) or unphosphorylated (state U ). When
phosphorylated, a site can bind to molecule F ; when unphosphorylated, it can bind
to molecule E. For instance, singleton block 4 has the CRN species where both sites
are phosphorylated and bound to two distinct copies of F . EFL does not distinguish
between the two sites. For instance, block 1 collects the two species where only one



Block No. Partition Block

1 {F (s!1).S(p1∼P !1, p2∼P ), F (s!1).S(p1∼P, p2∼P !1)}
2 {E(s)}
3 {F (s)}
4 {F (s!1).F (s!2).S(p1∼P !1, p2∼P !2)}
5 {S(p1∼U, p2∼U)}
6 {E(s!1).S(p1∼U !1, p2∼U), E(s!1).S(p1∼U, p2∼U !1)}
7 {E(s!1).E(s!2).S(p1∼U !1, p2∼U !2)}
8 {S(p1∼P, p2∼U), S(p1∼U, p2∼P )}
9 {E(s!1).S(p1∼P, p2∼U !1), E(s!1).S(p1∼U !1, p2∼P )}

10 {F (s!1).S(p1∼P !1, p2∼U), F (s!1).S(p1∼U, p2∼P !1)}
11 {E(s!1).F (s!2).S(p1∼P !2, p2∼U !1), E(s!1).F (s!2).S(p1∼U !1, p2∼P !2)}
12 {S(p1∼P, p2∼P )}

Table 2: EFL partition for model e2

copy of F is bound to one of the two sites, when they are both phosphorylated; block 10
is similar, but here only one binding site is unphosphorylated.

This is not the only symmetry captured by EFL, since it may not tell apart complexes
formed by different molecules. For instance, in m1 one of the equivalence classes is{

Dig2 gene(promoter!1).Ste12(dig1,dig2,dna!1,mapk),
Fus3 gene(promoter!1).Ste12(dig1,dig2,dna!1,mapk),
Msg5 gene(promoter!1).Ste12(dig1,dig2,dna!1,mapk),
Sst2 gene(promoter!1).Ste12(dig1,dig2,dna!1,mapk),
Ste12 gene(promoter!1).Ste12(dig1,dig2,dna!1,mapk),

Ste2 gene(promoter!1).Ste12(dig1,dig2,dna!1,mapk)
}
.

EFL captures that genes Dig2, Fus3, Msg5, Sst2, Ste12, and Ste2, bind to the pro-
tein Ste12 with equal rates. This yields equivalent dynamics for these Ste12-gene com-
plexes, and all those formed by them which are equal up to the gene bound to Ste12.

4 Exact Fluid Lumpability for CRNs

In this section we formally present EFL. We start in Section 4.1 with some preliminaries
on CRNs with ODE semantics based on the well-known law of mass action, where the
rate of interaction is proportional to the product of the reactant’s concentrations. We also
briefly review the notions of emulation in [4] which will be needed in the remainder.
Section 4.2 presents EFL and its structural characterization via the notion of fluxes.
Section 4.3 presents the algorithm for computing the coarsest EFL partition refinement.
Finally, Section 4.4 discusses how to compute the quotient CRN induced by EFL.

Notation. We write A→ B and BA for the functions from A to B. When f ∈ A→ B
and a ∈ A, we set fa := f(a). Moreover, for any X ⊆ A and b ∈ B, we define



f(X) := {b ∈ B | ∃a ∈ X.(f(a) = b))} and f−1(b) := {a ∈ A | f(a) = b}. Sets and
multisets are denoted by {. . .} and {| . . . |}, respectively.

4.1 Preliminaries

Chemical reaction networks. Let S be a countable universe of species and let S ⊆ S
be a finite set. Either side of a reaction is a multiset of species, i.e., a function in NS0 or
RS0 . It associates each species with its multiplicity as a reactant or product. A reaction
r over S is a triple (ρ, π, α) ∈ RS = NS0 × RS≥0 × R>0, representing the reaction
ρ→α π. Using standard notation (cf. Figure 1), we write ρ→α π as

ρX1X1 + . . .+ ρXnXn →α πX1X1 + . . .+ πXnXn

where ρXi are the multiplicities (stoichiometric numbers) of the reactant species, πXi
are the multiplicities of the product species, and α is a rate.

The instantaneous net stoichiometry φ(X, r) of a speciesX in a reaction r = ρ→α

π is the difference between product and reactant multiplicity, times the coefficient α:

φ(X, r) = φ(X, ρ→α π) = α(πX − ρX)

A chemical reaction network (CRN) is a pair (S,R) where R ⊆ RS is a finite set
of reactions over S such that ρ →α π, ρ →α′ π ∈ R implies α = α′. If π ∈ NS0 for
all ρ →α π ∈ R, (S,R) is a natural chemical reaction network (nCRN). For instance,
both MI and AM in Figure 1 are nCRNs, and the theory in [4] is formally provided for
nCRNs. Instead, we will use the more general CRN for the quotient network by EFL.

We now give a formulation of standard mass action kinetics. A state V ∈ RS≥0 of
a CRN (S,R) is a vector of concentrations for each species. For a reaction r ∈ R over
S, its mass action [r] ∈ RS≥0 → R is the product of the reagent concentrations, each to
the power of its stoichiometry, that is,

[r]V = [ρ→α π]V :=
∏
X∈S

V ρXX = V ρ

Thus, for instance, for MI we have that [Y0 + Z0 →α1 Z0 + Y1]V = VY0VZ0 while for
some homoreaction A+A→α B we have that [A+A→α B]V = V 2

A.
The (autonomous) ODE system V̇ = F (V ) underlying an CRN (S,R) is

F : RS≥0 → RS , with components FX(V ) :=
∑
r∈R

φ(X, r)[r]V , for X ∈ S .

For instance, the ODE for the MI network is given by:

V̇Y0 = −α1VY0VZ0 + α4VY0VY1

V̇Y1
= −α2VY1

VZ0
− α4VY0

VY1
+ α1VY0

VZ0
+ α3VY0

VY2

V̇Y2
= −α3VY0

VY2
+ α2VY1

VZ0

V̇Z0 = −α3VY0VZ0 + α2VZ0VZ1

V̇Z1
= −α2VZ0

VZ1
− α4VY0

VZ1
+ α1VZ0

VZ2
+ α3VY0

VZ0

V̇Z2
= −α1VZ0

VZ2
+ α4VY0

VZ1
.

(3)



Since the ODE system of a CRN is given by polynomials, function F is locally
Lipschitz. Hence, the theorem of Picard-Lindelöf ensures that there exists a unique
non-continuable solution of V̇ = F (V ).

Emulation. Let us denote by µ mappings of species and reactions between CRNs. Let
us consider two sets of species S and Ŝ and assume that µ ∈ S → Ŝ and ρ ∈ NS0 . Then,
µ(ρ) ∈ NŜ0 is given by µ(ρ)X =

∑
X′∈µ−1(X) ρ(X

′), where X ∈ Ŝ. Informally, µ(ρ)
is given by ρX1µ(X1) + . . . + ρXnµ(Xn). For instance, given ρ = Y0 + Z0 and the
mapping µ(Y0) = µ(Z0) = X0, we have that µ(ρ) = 2X0.

Definition 1. Let (S,R) and (Ŝ, R̂) denote two CRNs with underlying ODE systems
F and F̂ , respectively. A CRN morphism from (S,R) to (Ŝ, R̂) is a pair of functions
µS ∈ S → Ŝ and µR ∈ R→ R̂.

– (µS , µR) is a reactant morphism if, for all ρ →α π ∈ R there exist α̂ and π̂ with
µR(ρ→α π) = µS(ρ)→α̂ π̂ ∈ R̂.

– (µS , µR) is a stoichiomorphism whenever
∑
r∈µ−1

R (r̂) φ(s, r) = φ(µS(s), r̂) for

all s ∈ S and r̂ ∈ R̂.
– (µS , µR) is an emulation if it holds that F (V̂ ◦µS) = F̂ (V̂ )◦µS for all V̂ ∈ RŜ≥0.

We then say that F̂ emulates F .

A morphism relates the structure of two CRNs, while an emulation relates their
dynamics, since it relates the derivatives of the ODE systems underlying the two CRNs.
The following result states that reactant morphism and stoichiomorphism allow for a
structural characterization of emulations.

Theorem 1. Let µ ∈ (S,R) → (Ŝ, R̂) be a reactant morphism and a stoichiomor-
phism. Then, µ is an emulation.

This theorem is proven in [4] for nCRNs only, but it carries over to CRNs as well.
The mappings (1) and (2) are a reactant morphism and stoichiomorphism. By Theo-

rem 1 there is an emulation between the species’ concentrations, so V̇Y0
= V̇Z2

= V̇X0
,

V̇Y1 = V̇Z1 = V̇X1 , and V̇Y2 = V̇Z0 = V̇X2 in our running example. Thus, the ODE
solutions will have equal trajectories if the initial conditions satisfy VY0(0) = VZ2(0) =
VX0

(0), VY1
(0) = VZ1

(0) = VX1
(0) and VY2

(0) = VZ0
(0) = VX2

(0). This formally
explains the equivalence between the plots for MI and AM in Figure 1c.

4.2 Exact Fluid Lumpability

We now introduce EFL as a partition of species within a CRN, and then crucially state
that species in the same block have the same ODE solutions when initialized equally.

Definition 2 (Exact Fluid Lumpability). Let (S,R) be a CRN andH a partition of S.
Further, let us call V ∈ RS constant on H whenever VXi = VXj for all H ∈ H and
Xi, Xj ∈ H . A partition H of S is called exactly fluid lumpable if F (V ) is constant
on H whenever V is constant on H. We say that f : S → S is a choice function of H
when f(Xi) = f(Xj) ∈ H for all H ∈ H and Xi, Xj ∈ H .



Theorem 2. Let (S,R) be a CRN and H an EFL partition of S. Then, whenever the
initial condition V (0) of V̇ = F (V ) is constant on H, it holds that V (t) is constant
onH for all t ∈ I ∩ R≥0, with I being the time domain of V .3

Remark 1. As introduced in Section 2, there is a close connection between emulation
and EFL, in that emulation implicitly induces an EFL partition. More precisely, let us
assume that (µS , µR) ∈ (S,R)→ (Ŝ, R̂) is an emulation. Then, {µ−1S (X) | X ∈ Ŝ} is
an EFL partition of (S,R). Indeed, in our running example H̃ (introduced in Section 3)
is induced by the species mapping (1). Additionally, an emulation between two CRNs
can be explained as an EFL over the union CRN. For this, let us assume without loss of
generality that S ∩ Ŝ = ∅— otherwise it is always possible to rename species of either
CRN with fresh variables. Then,

{
µ−1S (X) ∪ {µS(X)} | X ∈ Ŝ

}
is an EFL partition

of the CRN (S ∪ Ŝ, R∪ R̂). For instance, this leads to viewing the mappings Y0 7→ X0

and Z2 7→ X0 of (1) as inducing the EFL block {Y0, Z2, X0} on the union CRN.

Given an EFL partition, an aggregated ODE system can be obtained by associating
an ODE with each equivalence class. This can be defined by picking only the ODEs of
the representatives, and replacing each species in the ODEs with its representative. For
instance, using the EFL partition H̃ and the choice function f̃ defined as

f̃(Y0) = f̃(Z2) = Y0, f̃(Y1) = f̃(Z1) = Y1, f̃(Y2) = f̃(Z0) = Y2,

we get the aggregated ODEs

V̇Y0 = −α1VY0VY2 + α4VY0VY1

V̇Y1
= −α2VY1

VY2
− α4VY0

VY1
+ α1VY0

VY2
+ α3VY0

VY2

V̇Y2
= −α3VY0

VY2
+ α2VY1

VY2

Unfortunately, Definition 2 is not convenient to be used directly because it involves
a universal quantifier over the whole (uncountable) state space, similarly to [24], as
discussed. Thus, we consider structural conditions which only concern the reactions
of a CRN. For this, we first formalize the notion of flux anticipated in Section 3, and
(novelly, to our knowledge) defined as a projection of reactions to species.

Definition 3 (Flux). For a given CRN (S,R), let F = (Z \ {0}) × R>0 × NS0 be the
set of flux terms. For a given species X ∈ S, the flux of X in (S,R), denoted by T (X),
is defined as the multiset of flux terms where the multiplicity of (z, α, ρ) ∈ F in T (X)
is given by the cardinality |{ρ→α π ∈ R | π(X)− ρ(X) = z}|.

A multiset is required because multiple reactions can contribute the same flux term.
For instance, in the CRNA+B →α C,A+B →α D, we have T (A) = {|(−1, α,A+
B), (−1, α,A + B)|}. It is easy to see that T (X) contains all the information to con-
struct the ODE for species X . In this form, the species’ behavior with respect to a
partition is obtained by renaming the reactants of fluxes with their representatives.

3 Note to reviewers. Proofs of all statements are given in the appendix, which will be made
publicly available in case of acceptance.



Definition 4. Let (S,R) be a CRN and let H denote a partition of S. Further, let f be
a choice function of H. Then, TH(X) is defined as the multiset of flux terms where the
multiplicity of (z, α, ρ) ∈ F in TH(X) is given by |{|(z, α, ρ0) ∈ T (X) | f(ρ0) = ρ|}|.
If no choice function is explicitly given we assume an arbitrary one, e.g., based on a
lexicographical order over species.

Informally, the multiset TH(X) arises from T (X) by replacing every term (z, α, ρ)
in T (X) with (z, α, f(ρ)). For instance, using the choice function f̃ for H̃ we get
TH̃(Z0) =

{∣∣(1, α2, Y2 + Y1), (−1, α3, Y0 + Y2)
∣∣} = TH̃(Y2). That is, with respect to

partition H̃, the behavior of Z0 and Y2 is characterized by equivalent fluxes.
The cumulative flux of X with respect to H, TΣH (X), sums all elements of TH(X)

which have the same reactants (an idea that appears also in Chemical Reaction Network
Theory, see [9] and references therein). Informally, TΣH (X) is obtained from TH(X) by
replacing all terms (z1, s1, ρ), . . . , (zk, sk, ρ) ∈ TH(X) with (z1s1 + . . .+ zksk, ρ). In
particular, TΣH (X) is, unlike TH(X) and T (X), an ordinary set.

Definition 5 (Cumulative Flux). Let (S,R) be a CRN. Then, for any partitionH of S
and X ∈ S, the cumulative flux of X with respect toH is given by the set

TΣH (X) =
{
(s, ρ) | ρ ∈ R

(
TH(X)

)
∧ s =

∑
(z,α,ρ)∈TH(X)

zα ∧ s 6= 0
}
,

where R
(
TH(X)

)
= {ρ | ∃z ∈ Z. ∃α ∈ R. ((z, α, ρ) ∈ TH(X))}.

The cumulative fluxes finally allow for a structural characterization of EFL.

Theorem 3. A partition H of S is exactly fluid lumpable if and only if TΣH (Xi) =
TΣH (Xj) for all H ∈ H and Xi, Xj ∈ H . The computation of {TΣH (X) | X ∈ S} can
be done in O

(
|S|2|R| log(|R|)

)
steps. Similarly, deciding whether a given partition H

is EFL can be done in O
(
|S|2|R| log(|R|)

)
steps.

4.3 Partition Refinement Algorithm for EFL

Now we turn to automatically finding EFL partitions. We first recall the notion of re-
finement and introduce afterwards two equivalence relations over the set of species.

Definition 6. Let H1 and H2 denote two partitions of S. Then, H1 is a refinement of
H2 if for any H1 ∈ H1 there exists a (unique) H2 ∈ H2 such that H1 ⊆ H2.

Definition 7. Let (S,R) be a CRN. For a partitionH of S andXi, Xj ∈ S, setXi ∼TΣH
Xj :⇔ TΣH (Xi) = TΣH (Xj). Moreover, set Xi ∼H Xj :⇔ ∃H ∈ H. (Xi, Xj ∈ H).

Next, we show that, for any given partition G of S, there exists a unique coarsest
EFL partition that refines G.

Proposition 1. Let (S,R) be a CRN. Then, ifH1 andH2 are EFL partitions of (S,R),
the partition S/(∼H1 ∪ ∼H2)

∗, where the asterisk denotes the transitive closure, is
EFL as well. Moreover, if H1,H2 are refinements of G, then so is S/(∼H1 ∪ ∼H2)

∗.
Crucially, there exists a unique coarsest EFL partition that refines G.



Algorithm 1 Construction of the coarsest EFL partition via partition refinement.

Require: A CRN (S,R) = ({X1, . . . , Xn}, R).
Require: A partition G of S.
H←− G
while true do

Compute TΣH (X1), . . . , T
Σ
H (Xn)

H′ ←− S/(∼TΣH ∩ ∼H)

ifH′ = H then
return H

else
H ←− H′

end if
end while

Algorithm 1 computes the coarsest EFL partition that refines a given input partition.
The following theorem proves its correctness.

Theorem 4. Given a CRN (S,R) and a partition G of S, Algorithm 1 calculates the
coarsest EFL partition that refines G in at mostO

(
|S|3|R|

(
log(|S|)+log(|R|)

))
steps.

The idea is to study the sequenceHn := S/(∼TΣHn−1

∩ ∼Hn−1
), whereH0 is the initial

input partition G, and n ≥ 1. The theorem establishes that (Hn)n converges to H, the
coarsest EFL partition that refines G, by proving that H is a refinement of Hn and that
Hn is a refinement of Hn−1 for all n ≥ 1. Obviously, by intersecting with ∼Hn−1

in the definition of Hn, one ensures that Hn is a refinement of Hn−1. To see that the
intersection with∼Hn−1 is also necessary, consider the CRNX →1 Y ,X →1 Z. Then,
the sequence given by Hn := S/ ∼TΣHn−1

and H0 := G yields H1 = {{X}, {Y,Z}}
if G = {{X}, {Y }, {Z}}. That is, H1 does not refine H0 in general. However, in the
special case where G = {{S}}, (Hn)n can be shown to converge to the coarsest EFL
partition refining G.

4.4 Computation and Characterization of the Quotient CRN by EFL

We now present an algorithm which provides a CRN that induces the aggregated ODE
system underlying an EFL partition. As will be seen later, in general there exist several
CRNs that have the same ODE system. Therefore, here we consider a canonical CRN
representation with two notable properties. (P1) It preserves the structural properties of
the original CRN. In particular, the reduced CRN can be related to the original one by
means of a reactant morphism which is also a stoichiomorphism. (P2) The CRN is of
minimal size, in the sense that any other CRN that yields the same ODEs and is related
to the original CRN by means of a reactant morphism which is also a stoichiomorphism
has at least the same number of reactions as the canonical representation.

Our algorithm will make suitable transformations to the original CRN in order to
build the quotient one. A reactant morphism is induced naturally by mapping all species
to their representatives. The original ODE system and the aggregated one are related by



an emulation. Thus, for studying (P1) we need to identify conditions under which reac-
tant morphism and emulation imply a stoichiomorphism. The following result from [4]
carries over from nCRNs to CRNs and is a first step towards this goal.

Theorem 5. Let us assume that µ : (S,R) → (Ŝ, R̂) is a reactant morphism and
emulation. Assume further that the reactants of R̂ are pairwise different, i.e. ρ̂ →α̂

π̂, ρ̂′ →α̂′ π̂′ ∈ R̂ implies ρ̂ 6= ρ̂′. Then, µ is a stoichiomorphism.

Fortunately, unlike for nCRNs, Theorem 5 can be improved in the case of CRNs,
removing the assumption of pairwise different reactants. For this, let us first introduce
the notion of the ρ-normalization morphism.

Definition 8. Let (S,R) be a CRN and ρ ∈ NS0 .

– The ρ-filter Rρ is given by Rρ = {ρ̃→α̃ π̃ ∈ R | ρ̃ = ρ}.
– For Iρ 6= ∅ such that Rρ = {ρ →αi πi | i ∈ Iρ}, we define the ρ-merge reaction
rρ by rρ := ρ→αρ πρ, where αρ =

∑
i∈Iρ αi and πρ =

∑
i∈Iρ

αi
αρ
πi.

– For Rρ 6= ∅, the ρ-normalization morphism µ ∈ (S,R)→
(
S, (R \Rρ)∪ {rρ}

)
is

given by µS := idS and µR(r) :=

{
r , r ∈ R \Rρ
rρ , r ∈ Rρ

For instance, if (S,R) is the AM network in Figure 1, we have that

RX0+X2 = {X0 +X2 →α1 X2 +X1, X2 +X0 →α2 X0 +X1} and

rρ : X0 +X2 →α1+α2
α2

α1 + α2
X0 +

α1 + α2

α1 + α2
X1 +

α1

α1 + α2
X2

The next proposition shows that replacing the set of reactions Rρ by the single reaction
rρ does not change the underlying ODE system and leads to a CRN which is structurally
related to the original one.

Proposition 2. Let µ ∈ (S,R)→ (Ŝ, R̂) be the CRN ρ-normalization morphism, then
µ is a reactant morphism, a stoichiomorphism and an emulation.

Proposition 3 tells us that Proposition 2 can be applied several times without chang-
ing the structure or the underlying ODE system.

Proposition 3. Given a CRN (S,R), by repeated application of Proposition 2 to any
|Rρ| > 1, we obtain a CRN (S, R̂) with pairwise different reactants. The composition of
all ρ-normalization morphisms (µS , µR) ∈ (S,R)→ (S, R̂) is a reactant morphism, a
stoichiomorphism and emulation with µS = idS .

By combining Theorem 1 and Proposition 3, we infer our desired result — an en-
hanced version of Theorem 5 where the assumption on pairwise different reactants is
dropped owing to Proposition 3.

Theorem 6. Let us assume that (µS , µR) : (S,R) → (Ŝ, R̂) is an emulation and
reactant morphism. Moreover, let (idŜ , µR̂) : (Ŝ, R̂)→ (Ŝ, R̂) denote the composition
of ρ-normalization morphisms from Proposition 3 which ensures that R̂ has pairwise
different reactants. Then, (µS , µR̂ ◦ µR) : (S,R) → (Ŝ, R̂) is an emulation, reactant
morphism and stoichiomorphism.



Algorithm 2 Calculation of the CRN in canonical form which induces the aggregated
ODE system underlying a given EFL partition.

Require: A CRN (S,R) =
(
{X1, . . . , Xn}, R

)
.

Require: An EFL partitionH underlying (S,R).
Require: A choice function µS ofH, with Ŝ := µS(S).

(O1) Replace any ρ→α π with ρ→α π̃ where π̃(Xi) :=

{
π(Xi) , Xi ∈ Ŝ,
ρ(Xi) , Xi /∈ Ŝ.

(O2) Replace any ρ→α π with ρ̃→α π̃ where ρ̃ = µS(ρ) and π̃ = µS(π).

(O3) For any ρ ∈ NS0 with Rρ 6= ∅, replace the set of reactions Rρ by the ρ-merge reaction rρ
as discussed in Definition 8.

return (Ŝ, R̂), where R̂ denotes the as modified set of reactions.

We are ready to present Algorithm 2, which yields the CRN in canonical form un-
derlying the quotient ODE system by an EFL partition. Let us explain it using the MI
network with the EFL partition H̃ and the choice function µS = f̃ .

The steps (O1)–(O3) can be explained with the observation that the aggregated ODE
system contains only the ODEs of the representatives, denoted by Ŝ. Thus we have
only to keep track of the fluxes which affect them. For this, in (O1) we first remove all
products which are not elements of Ŝ. For instance, reactionmi1 becomes Y0+Z0 →α1

Y1. Then, we complete (O1) by introducing additional products that make sure that the
net stoichiometry of elements outside Ŝ is zero. In our example, this yields

Y0 + Z0 →α1 Y1 + Z0 Z2 + Z0 →α1 Z2 + Z0

Y1 + Z0 →α2 Y2 + Z0 Z1 + Z0 →α2 Z1 + Z0

Y2 + Y0 →α3 Y0 + Y1 Z0 + Y0 →α3 Y0 + Z0

Y1 + Y0 →α4 Y0 + Y0 Z1 + Y0 →α4 Y0 + Z1

In (O2), we replace any species with the representative of its partition block, yielding,

Y0 + Y2 →α1 Y1 + Y2 Y0 + Y2 →α1 Y0 + Y2

Y1 + Y2 →α2 Y2 + Y2 Y1 + Y2 →α2 Y1 + Y2

Y2 + Y0 →α3 Y0 + Y1 Y2 + Y0 →α3 Y0 + Y2

Y1 + Y0 →α4 Y0 + Y0 Y1 + Y0 →α4 Y0 + Y1

In (O3), instead, each nonempty reaction set Rρ 6= ∅ is merged to the ρ-merge reaction
as discussed in Definition 8. In the case of our example, we get

Y0 + Y2 →2α1+2α3

α1 + α3

2α1 + 2α3
Y1 +

2α1 + α3

2α1 + 2α3
Y2 +

α1 + 2α3

2α1 + 2α3
Y0

Y1 + Y2 →2α2

3α2

2α2
Y2 +

α2

2α2
Y1

Y1 + Y0 →2α4

3α4

2α4
Y0 +

α4

2α4
Y1



The next theorem states that the sketched algorithm is correct and provides us with
a minimal number of chemical reactions in polynomial time.

Theorem 7. Let H be an EFL partition of (S,R) and µS be a choice function of H.
Further, set Ŝ := µS(S).

– Algorithm 2 returns, after at most O
(
|S||R| log(|R|)

)
steps, a CRN (Ŝ, R̂) which

can be related by means of a reactant morphism, stoichiomorphism and emulation
(µS , µR) : (S,R) → (Ŝ, R̂), where µR(ρ →α π′) := µS(ρ) →β π and β, π are
uniquely determined by the reactant µS(ρ).

– |R̂| is minimal, i.e., if (Ŝ, R̂) is also a CRN such that there exists a reactant mor-
phism and stoichiomorphism (µS , µR) : (S,R)→ (Ŝ, R̂), then |R̂| ≤ |R̂|.

– The CRN (Ŝ, R̂) returned by Algorithm 2 using µ
S

, another choice function of H,
is such that |R̂| = |R̂|. That is, the size of the CRN is invariant under the choice of
the representatives ofH.

The lower time complexity of Algorithm 2 with respect to Algorithm 1 explains the
differences in their respective runtimes measured in the case studies of Table 1.

Remark 2. Let (S,R) denote the CRN of the MI network and let R̂ be

Y0 + Y2 →α1+α3 Y1 +
α3

α1 + α3
Y0 +

α1

α1 + α3
Y2

Y1 + Y2 →α2 Y2 + Y2

Y1 + Y0 →α4 Y0 + Y0

Then, there exists a unique µ
R

: R → R̂ such that (µS , µR) : (S,R) → (Ŝ, R̂) is
an emulation, reactant morphism and stoichiomorphism. Thus, as anticipated, there are
in general more than one CRNs which induce the same aggregated ODE system and
which are structurally related to the original CRN.

5 Conclusion

Exact fluid lumpability (EFL) is a property of a system of ordinary differential equations
that guarantees equal solutions for variables that are initialized equally. We have char-
acterized EFL for chemical reaction networks (CRNs) in terms of structural conditions
that only concern the set of reactions. This has allowed an efficient way of checking
candidate EFL partitions and of computing the coarsest one. We provided an algorithm
to construct a quotient CRN induced by EFL in a canonical form. This is related by
means of appropriate mappings to the original CRN, thus fully reconciling our theory
with the morphisms recently developed in [4] to study relations between CRNs. Subject
of ongoing work is the implementation of a mature version of our prototype.

Acknowledgement. This work is partially supported by the EU project QUANTICOL,
600708, and by the DFG project FEMPA.
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A Proofs

Proof (Theorem 2). Let µS : S → S be some choice function of H, set Ŝ := µS(S)

and define GX̂(V̂ ) := FX̂(V̂ ◦µS) for any V̂ ∈ RŜ and X̂ ∈ Ŝ. Further, let V̂ denote
the unique ODE solution of d

dt V̂ (t) = G
(
V̂ (t)

)
subject to some given initial condition

V̂ (0). Then, for all X ∈ S, it holds that

d

dt
(V̂ (t) ◦ µS)X =

( d
dt

V̂ (t)
)
µS(X)

=

= GµS(X)

(
V̂ (t)

)
= FµS(X)(V̂ (t) ◦ µS) = FX(V̂ (t) ◦ µS)

Thus, t 7→ V̂ (t) ◦ µS is the unique solution of the ODE system d
dtV (t) = F (V (t))

subject to V̂ (0) ◦ µS . Since t 7→ V̂ (t) ◦ µS is constant onH, the proof is complete.

Proof (Theorem 3). We first show the first claim. Fix two arbitraryXi, Xj ∈ S. Further,
let µS : S → S be some choice function of a given partition H. Then, together with
Ŝ := µS(S), it suffices to show that TΣH (Xi) = TΣH (Xj) if and only if FXi(V̂ ◦ µS) =
FXj (V̂ ◦ µS) for all V̂ ∈ RŜ . The if direction follows because TΣH (Xi) = TΣH (Xj)

implies that the coefficients of the polynomials V̂ 7→ FXi(V̂ ◦ µS) and V̂ 7→ FXj (V̂ ◦
µS) are the same. To see that the only-if direction holds true, instead, recall that the
multivariate version of Taylor’s theorem ensures that two real polynomials p, q that
satisfy p ≡ q have necessarily the same coefficients.

To see the second claim, we first observe that computing {T (X) | X ∈ S} takes
at most |S||R| steps and that |T (X)| ≤ |R| for all X ∈ S. Thus, rewriting T (X) into
TH(X) takes at most |S||R| steps. To infer TΣH (X) from TH(X), we first sort the entries
of TH(X) with respect to reactants. This can be done in O

(
|S||R| log(|R|)

)
steps,

because |TH(X)| = |T (X)| ≤ |R|. Afterwards, we sum entries with the same reactants
together. The number of summations is bounded by |TH(X)| ≤ |R|, meaning that
TΣH (X) can be computed from TH(X) in at most O

(
|S||R| log(|R|) + |S||R|

)
steps.

From this we infer that {TΣH (X) | X ∈ S} can be computed in O
(
|S|2|R| log(|R|)

)
steps.

We next prove the third statement. If each TΣH (X) is sorted with respect to the reac-
tants, deciding whether TΣH (Xi) is equal to TΣH (Xj) can be done in |S|max{|TΣH (Xi)|,
|TΣH (Xj)|} ≤ |S||R| steps. Thus, if {TΣH (X) | X ∈ S} is given as above, checking
whether a given partition is EFL or not takes at most O(|S|2|R|) steps.

Proof (Proposition 1). Note that TΣG (Xi) = TΣG (Xj) implies TΣG′(Xi) = TΣG′(Xj) for
any Xi, Xj ∈ S, whenever G is a refinement of G′. Thus, since H1 and H2 are EFL
partitions, we infer using Theorem 3 that TΣG′(Xi) = TΣG′(Xj) for any Xi, Xj ∈ H and
H ∈ S/(∼H1

∪ ∼H2
)∗. Applying Theorem 3 again shows that S/(∼H1

∪ ∼H2
)∗ is an

EFL partition. Let us now assume that H1,H2 are refinements of some other partition
G. For the sake of brevity, define ∼i:=∼Hi . We next show that S/(∼1 ∪ ∼2)

∗ is a
refinement of G. To see this, let us assume that X0 ∼i1 X1 ∼i2 . . . ∼ik Xk, where
ij ∈ {1, 2} for all 1 ≤ j ≤ k. Then, is suffices to prove that there exists a (unique)
G ∈ G such that X1, . . . , Xk ∈ G. We show this by induction. Since the base case



k = 1 is trivial, let us consider the induction step k → k + 1. Then, Xk ∼ik+1
Xk+1

implies the existence of some H ∈ Hik+1
such that Xk, Xk+1 ∈ H . Let Gk ∈ G be

such that H ⊆ Gk. Since Xk ∈ G by induction hypothesis and Xk ∈ Gk, it holds that
G∩Gk 6= ∅. Since G is a partition, this implies that G = Gk and the proof is complete.

Proof (Theorem 4). For the proof of correctness, let us assume thatH denotes the coars-
est EFL partition that refines H0 := G and define Hk+1 := S/(∼TΣHk ∩ ∼Hk) for all
k ≥ 0. Then, the sequenceH0,H1,H2, . . . is such that

– H is a refinement ofHk
– Hk is a refinement ofHk−1

for all k ≥ 1. We prove this by induction on k.

– k = 1: Since H is a refinement of H0, TΣH (Xi) = TΣH (Xj) implies TΣH0
(Xi) =

TΣH0
(Xj) for any Xi, Xj ∈ S. Noting that this yields ∼H⊆∼TΣH0

we readily infer
that ∼H⊆∼TΣH0

∩ ∼H0 . The second claim is trivial.

– k → k+1 : Thanks to the fact thatH is a refinement ofHk by induction, TΣH (Xi) =
TΣH (Xj) implies TΣHk(Xi) = TΣHk(Xj) for any Xi, Xj ∈ S. Hence, ∼H⊆∼TΣHk
and the induction hypothesis yields∼H⊆∼TΣHk ∩ ∼Hk . The second claim is trivial.

Since H is a refinement of any Hk, it holds that H = Hk whenever Hk is an EFL
partition. Moreover, thanks to the fact that Hk is a refinement of Hk−1 for all k ≥ 1,
we can fix the smallest k ≥ 1 such that Hk = Hk−1. Let us pick arbitrary H ∈ Hk
and Xi, Xj ∈ H . Since Hk = S/(∼TΣHk−1

∩ ∼Hk−1
), it holds that TΣHk−1

(Xi) =

TΣHk−1
(Xj). Recalling that Hk = Hk−1, this yields TΣHk(Xi) = TΣHk(Xj). Since this

shows thatHk is an EFL partition, we infer the correctness of the algorithm.
We now bound the number of steps. In our implementation, each species is repre-

sented by a structure that embodies a species integer sid, a list of fluxes fluxes and
a pointer to a species structure repr. Moreover, species denotes an array of size |S|
that stores the pointers to all species structures. A partition H of S that is given by a
choice function µS : S → S is encoded via the repr fields: if X is a species structure
with X.sid == i and µS(Xi) = Xj , then X.repr points to the structure ofXj . We
discuss next how to calculate S/(∼TΣH ∩ ∼H).

In the first step, we exchange the entries of the array species in such a way
that whenever *(species[i]).repr != *(species[i+1]).repr, then, for
all j > i, it holds that *(species[i]).repr != *(species[j]).repr. In
other words, our goal is to permute the entries of species in such a way that each
equivalence class of H builds a connected interval in {1, . . . , |S|}. Since comparison
and exchange of pointers needs constant time, this can be done in O(|S|2) steps.

In the second step, we update the fields fluxes by calculating {TΣH (X) | X ∈ S}
where the entries of each TΣH (X) are sorted with respect to the reactants. Theorem 3
ensures that this can be done in O

(
|S|2|R| log(|R|)

)
steps.

For the third step, we note that each entry of TΣH (X) refers to a monomial, meaning
that TΣH (X) itself represents a polynomial. Due to the fact that TΣH (X) is sorted with



respect to monomials, it is possible to define a linear orderingv on the set of polynomi-
als that allows to check in O(|S||R|) steps whether TΣH (Xi) v TΣH (Xj) or not. Armed
with this notion, we now sort each single equivalence class ofH. Thanks to the first step,
the latter are present as intervals in species. Thus, if H1, . . . ,Hm are equivalence
classes of H and |S|i := |Hi|, there exists a constant C > 0 such that the sorting of
H1, . . . ,Hm takes up to C|S||R|

∑m
i=1 |S|i log(|S|i) ≤ C|S||R|

∑m
i=1 |S|i log(|S|) =

C|S|2|R| log(|S|) steps. Note that after the sorting, each Hi will still occupy the same
interval of indices in species.

In the forth step, all we need to do is to update the repr fields in species. Clearly,
(Xi, Xj) ∈∼TΣH ∩ ∼H if and only if TΣH (Xi) = TΣH (Xj) and Xi, Xj ∈ H for some
H ∈ H. Thus, after taking into account that comparing and exchanging of TΣH (Xi) and
TΣH (Xj) needs O(|S||R|) steps, we infer that the third step can be done in O(|S|2|R|)
steps.

After the forth step, species encodesH′ := S/(∼TΣH ∩ ∼H) in a way where the
equivalence classes ofH′ build intervals in species. In particular, the first step is only
needed whenH is given by the initial partition G. In order to check whetherH′ is EFL or
not, we perform the second step forH′, i.e. we update the fields fluxes in species
by calculating {TΣH′(X) | X ∈ S}. Then, since comparing TΣH′(Xi) and TΣH′(Xj)
needs up to O(|S||R|) steps, determining whether H′ is EFL or not can be done in
O(|S|2|R|) steps. This is because H is an EFL partition if and only if H = S/ ∼TΣH .
In the case H′ is an EFL partition, we can terminate. Otherwise, we continue with step
three.

From the above discussion, it becomes apparent that the number of steps we need
is at most |S|

[
O
(
|S|2|R| log(|R|)

)
+ O(|S|2|R| log(|S|))

]
= O

(
|S|3|R|(log(|S|) +

log(|R|))
)
.

Proof (Proposition 2). We first show that µ is a reactant morphism:

– For r = ρ→α π ∈ R \Rρ we get µR(ρ→α π) = ρ→α π = µS(ρ)→α π.
– For r = ρ→α π ∈ Rρ we get µR(ρ→α π) = rρ = ρ→αρ π = µS(ρ)→αρ πρ.

In order to see that µ is also a stoichiomorphism, we fix an arbitraryX ∈ S and proceed
by case distinction.

– If r̂ ∈ R \Rρ, then µ−1R (r̂) = {r̂}. Hence
∑
r∈µ−1

R (r̂) φ(X, r) = φ(µS(X), r̂)

– If r̂ = rρ, then µ−1R (r̂) = Rρ = {ρ→αi πi | i ∈ Iρ}, yielding∑
r∈µ−1

R (r̂)

φ(X, r) =
∑
i∈Iρ

φ(X, ρ→αi πi) =
∑
i∈Iρ

αi
(
(πi)X − ρX

)
=
∑
i∈Iρ

(
αi · (πi)X

)
−
(∑
i∈Iρ

αi
)
ρX = αρ

∑
i∈Iρ

αi
αρ

(πi)X − αρρX

= αρ

((∑
i∈Iρ

αi
αρ

(πi)X
)
− ρX

)
= αρ

(
πρX − ρX

)
= φ(X, rρ) = φ(µS(X), rρ)



Since this shows that
∑
r∈µ−1

R (r̂) φ(X, r) = φ(µS(X), r̂) for any reaction r̂ ∈ R̂ =

(R \ Rρ) ∪ {rρ}, we infer that µ is also a stoichiomorphism. Moreover, Theorem 1
ensures that µ is an emulation.

Proof (Proposition 3). It suffices to observe that the results on compositions made in [4]
for nCRNs carry over to CRNs.

Proof (Theorem 6). Follows as a direct consequence of Theorem 1 and Proposition 3.

Proof (Theorem 7). Let us first consider the time complexity. By encoding µS : S → S,
ρ and π as arrays of length |S|, it is obvious that (O1) needs at most |R||S| steps. Simi-
larly, it can be easily seen that (O2) needs at most 2|R||S| steps. We perform (O3) in two
steps. First, we sort the set of reactions with respect to the reactants. Since a comparison
and exchange of two reactions takes at most |S|+6|S| time steps, the sorting of R does
not need more than O

(
|S||R| log(|R|)

)
steps. After R has been sorted with respect to

the reactants, we merge the underlying reaction groups together. Here, we note that all
mergings can be done in |R||S| steps, because the sizes of all groups sum up to |R|.
We now turn to the remaining part of the first statement. Let (X,V ) 7→ GX(V ) denote
the drift induced by the reactions under study. We next prove that GXk(V̂ ◦ µS) =

FXk(V̂ ◦ µS) for all V̂ ∈ RŜ≥0 and Xk ∈ Ŝ at any step of the algorithm. For this,
let us consider a reaction change ρ →α π 7→ ρ →α π̃ as applied in (O1). Then, the
value of GXk(V̂ ◦ µS) is not changed because of π(Xk)− ρ(Xk) = π̃(Xk)− ρ(Xk).
Let us now consider a reaction change ρ →α π 7→ ρ̃ →α π̃ as in (O2). Such a
change does not affect GXk(V̂ ◦ µS) for two reasons. First, since H is an EFL par-
tition, H = {µ−1S (Xi) | Xi ∈ Ŝ} implies that Xi(t) = Xj(t) for all Xj ∈ µ−1S (Xi),
Xi ∈ Ŝ and t ∈ I ∩R≥0. Consequently, the (V̂ ◦ µS)ρ = (V̂ ◦ µS)ρ̃. Second, it holds
that π(Xk) − ρ(Xk) = π̃(Xk) − ρ̃(Xk). Since Proposition 3 ensures that (O3) does
not change the value of GXk(V̂ ◦ µS) either, we infer that (µS , µR) is an emulation.
Moreover, by construction, reactions of R̂ have pairwise different reactants and each
ρ̂ →β π̂ ∈ R̂ is such that there exists some ρ →α π ∈ R with ρ̂ = µS(ρ). Hence,
(µS , µR) is a reactant morphism. Using Theorem 5, we infer that (µS , µR) is also a
stoichiomorphism. This yields the first claim. The second claim, instead, holds because
(µS , µR) : (S,R) → (Ŝ, R̂) is a reactant morphism and R̂ has pairwise different re-
actants. Similarly, the third claim holds true because (µ

S
, µ
R
) : (S,R) → (Ŝ, R̂) is a

reactant morphism, R̂ has pairwise different reactants and |Ŝ| = |Ŝ|.


